ORIGINAL # **SOUTHWEST GAS CORPORATION** March 31, 2016 RECEIVED 2016 MAR 31 A 11: 20 AZ CORP COMMISSION DOCKET CONTROL Docket Control Arizona Corporation Commission 1200 West Washington Street Phoenix, AZ 85007-2996 Re: Docket No. G-01551A-04-0876; Decision No. 68487 Pursuant to Commission Decision No. 68487, Southwest Gas Corporation (Southwest Gas) hereby submits for filing an original and thirteen copies of Southwest Gas' Arizona Research 2015 Summary Report and 2016 Plan. Finding of Fact No. 37 of the Decision states, "Gas Research should be funded at the level recommended by Staff, but Southwest Gas should have the flexibility, subject to Staff oversight, to select appropriate entities for use of the research funds." The submitted Plan provides a list and description of the research programs to be funded by Southwest Gas between April 2016 and March 2017 and includes projects funded between April 2015 and March 2016. Representatives from Southwest Gas met with Utilities Division Staff to provide a general update on Southwest Gas' R&D activities over the past year and planned projects for the upcoming year. If you have any questions or require additional information, please contact me at 602-395-4058. Respectfully submitted. Matthew D. Derr Regulatory Manager/Arizona Cc: Tom Broderick, ACC Utilities Division Terri Ford, ACC Utilities Division Bob Gray, ACC Utilities Division Barbara Keene, ACC Utilities Division Julie McNeely-Kirwan, ACC Utilities Division David Tenney, RUCO Arizona Corporation Commission DOCKETED MAR 3 1 2016 **DOCKETED BY** 14 | Description | | '15 - Mar.
Funding | |---|----|-----------------------| | ACC approved Research and Development funding | 1 | \$688,712 | | the approved recode an and persophical familiary | _ | \$000,7 TZ | | Operational Technology Development (OTD) | \$ | 399,156 | | -OTD Annual fee \$330,155 | | | | -Supplemental OTD funding \$69,001 | | | | NYSEARCH | \$ | 70,376 | | -Annual fee \$44,021 | | _ | | -Ref. No 32- Emissions Quantification Test Program \$10,393
-Ref. No 33- Hardness Testing – Feasibility Study with Robotic
Platform – Phase II \$15,962 | | | | Other | \$ | 219,180 | | -Ref. No 38- Temperature Study \$76,991 -Ref. No 39 Joint Industry Project (JIP)- Improved In-Situ Determination of Pipe and Weld Properties \$14,161 | | | | -Ref. No 40- Keyhole Tool \$17,976 | ├─ | | | -Ref. No 41- Picarro Surveyor \$110,052 | | | | Total Dollars Allocated | \$ | 688.712 | | | Ť | 300,712 | | Available Dollars | \$ | | | Description | Apr. '16 - Mar.
'17 Funding | | | |---|--------------------------------|--|--| | ACC approved Research and Development funding | \$688,712 | | | | Operational Technology Development (OTD) -OTD Annual fee \$330,155 | \$
330,155 | | | | NYSEARCH -Annual fee \$44,021 -Ref. No 32- Emissions Quantification Test Program \$28.188 | \$
191,690 | | | | - Ref. No 34- Design, Construction and Testing of Magnetic Flux Leakage (MFL) Sensor for Inspection of Bends in Unpiggable Pipelines - Phase VII-b \$43,254 -Ref. No 35-Odor Detection Threshold Study \$24,872 | | | | | -Ref No. 36 Standoff Gas Flow Imaging and Analysis
System Proof of Concept \$38,691
-Ref No 37- Development & Testing of RFID Tag for
Coiled PE Pipe \$12,664 | | | | | Other -Ref. No 38-Temperature Study \$47,690 | \$
47,690 | | | | Total Dollars Allocated | \$
569,535 | | | | Available Dollars | \$
119,177 | | | Available Dollars \$ 119,177 Note: Southwest anticipates using all available dollars as appropriate R&D project proposals are received. | Ref. No | Organization/Project Name | Research
Performer | Project Description | Potential Benefits to AZ Customers | Status | Apr. '15 - Mar. '16
Funding | Apr. '16 - Mar. '17
Funding | |---------|--|-----------------------|---|---|--|--------------------------------|--------------------------------| | | Operations Technology
Development (OTD) Program | | | | | | | | | Dues (Project Allocation and
Administrative Costs) Carry over from previous year | | | | Subtotal OTD Allocation | \$399,156 | \$330,155 | | | Refunds | | | | | -\$19,994 | -\$124,490 | | | Heldinus | | | | 7.11.7.11.4.15.45.45.45.45.45.45.45.45.45.45.45.45.45 | \$559 | \$0 | | | | + | | | Total Available for Allocation | \$379,721 | \$205,665 | | | | Gas Technology | | | | | | | | OTD Administrative Costs | Institute (GTI) | 1 | | | \$29,939 | \$24,762 | | 1 | (1.14.d) Field Measurement of
Leak Flow Rate Ph2 | GTI | Develop an inexpensive and repeatable device that can provide a course measurement of the gas leakage rate in the field while investigating leaks on distribution piping. | This project has an economic benefit: This will assist in prioritizing the repair of grade 3 leaks by their rate of emission and this leak rate information can also be used in prioritizing segments for main replacement programs. | Phase 2 further develops the technology to accurately quantify the leak rate of non-hazardous leaks. This work will make improvements on the sipha prototype developed in phase 1 and upgrade the technology to allow increased accuracy, precision, lower cost, and ease of use. | \$7,337 | | | 2 | (1.14.g) Evaluation of
Residential Methane Detectors
(RMD) - Phase 2 | GTI | Conduct a testing program of commercially available residential methane detectors, both domestically and internationally. | This project has a safety benefit: Possibility of additional level of natural gas leak detection. | A test plan has been established. Three manufacturers were selected based on market share and performance in previous test phases. The 1 will test up to 758 RMIos (252 from each manufacturer) as "out of the box" monitors. Tier 2 will test up to 279 RMIos (93 from each manufacturer) that are packaged with an independent referee sensor and alarm monitor. This bundled unit will continuously log discrete values for both the methane level and the alarm status. At the end of the test period, each detector will again be tested to verify performance over the pilot period. | \$3,669 | \$4,426 | | 3 | (1.14.h) Picarro Surveyor Winter
Patrol Implementation | Picarro and GTI | Demonstrate that the use of Picarro Surveyor enhances the effectiveness of winter leak patrols in identifying cast iron main breaks due to freeze conditions. | This project has a safety benefit Enhance the cycle time to complete leak surveys. The expected increase in the effectiveness of surveys will directly enhance public safety. | Staten Island was chosen as the survey area for the comparison because it has a combination of older cast fron gas mains and newer plastic gas mains. For the analysis, both Piccarro and National Grid sent leak survey reports to GTI over a period of four winter months. Thase leak reports were analyzed. It was concluded that the Piccaro Surveyor successfully demonstrated the merits of its automated survey process by identifying more gas leaks including the cast from main breaks due to freeze conditions in the same amount of time. A Final Report to be completed. | \$7,337 | | | 4 | (1.15.d) Improved Camera
Imaging to Identify Cross Bores | GTI | Provide an evaluation of potential systems to
work in conjunction with various types of
trenchless pipe installation technologies,
including the use of Horizontal Directional
Drilling (HDD) equipment with drilling mud, and
still be able to positively identify a cross bore. | This project has a safety benefit: The potential to prevent future cross bores. | An initial patent/literature search produced no new information on sewer camera technology. This, along with discussions with experts in the industry, indicated that there is little that can be done to improve this technology without additional technology aleforms. Subsequently, several potential alternative platforms were identified. | \$3,669 | \$2,220 | | 5 | (2.11.m) Identification of Non-
Conforming High-Density
Polyethylene (HDPE) Pipe | GTI | Develop prototype inspection tools capable of
identifying non-conforming material in legacy
HDPE 7000 and 8000 pipe used for gas mains
and services. Internal and external inspections
tools are to be developed to simplify detection of
non-conforming pipe relative to normal HDPE
pipe. | | The development of two tools continues. The first is an external ultrasonic tool that allows polyethytera
(PE) piping in the field to be examined for evidence of determination prior to a fitting being installed. The second tool is an internal ultrasonic tool that will allow for the examination of active service lines. The external tool beta unit has been tested and appears promising at this time. | \$339,468 | \$235,396 | | 6 | (2.14.e) Guidelines/Best
Practices for Scraping
Polyethylene (PE) Pipe and
Fittings | 1 | | This project has safety and economic benefits
Enhancement of fusion execution for better
consistency in performance. | Information from survey results was combined with data from previous projects and a test matrix for the pertinent tools was developed. Scrapers were ordered for testing. | \$922 | | | Ref. No | Organization/Project Name | Research
Performer | Project Description | Potential Benefits to AZ Customers | Status | Apr. '15 - Mar. '16
Funding | Apr. '16 - Mar. '1
Funding | |---------|---|-----------------------|---|--|--|--------------------------------|-------------------------------| | 7 | (3.14.a) Soil Compaction
Supervisor Enhancements | GTI/MBW Inc. | Upgrade the capabilities of the Soil Compaction Supervisor (SCS) to make it compatible with modern information systems and data capture practices as well as more user friendly through better data logging and reporting capabilities. Initial efforts will also be investigated to determine the SCS's ability to be correlated to a standard proctor value or range. | This project has safety and economic benefits
Ensure that compaction is being performed
properly (quality control) and enabling a utility
to validate proper compaction. | GTI worked with MBW to design a Windows-based interface that is acceptable to the utilities and allows for easy data transfer in a database-ready format. Having this user interface allows the users to review data both immediately in the field as well as in the back office, providing the opportunity for further analysis. The application was but excording to the specifications of the SCS demo prototype; the final prototype was not aspecification of the United SCS demo prototype; in final prototype was not application development once the prototype is finalized. The Windowsbased application has been demonstrated to the project sponsors and to MBW for consideration in future development. | \$2,622 | \$1,762 | | 8 | (4.13.c.2) Pipeline and
Hazardous Materials Safety
Administration (PHMSA) Electro-
Magnetic Acoustic Transducer
(EMAT) Sensor for Small
Diameter and Unpiggable Pipe
Phase 2 Construct and test field
ready prototype) | GTI | Build and test an EMAT sensor prototype to detect and quantify wall loss and longitudinal cracks in metallic pipes. The sensor will be used to assess small-diameter and unpiggable pipes containing fittings and other restricting features. | This project has safety and economic benefits:
Reduce the cost of retesting pipelines that
have been using historic operating pressure to
establish Maximum Allowable Operating
Pressure (MAOP). | Develop a bi-directional EMAT sensor that can be used to assess small | \$7,337 | \$7,337 | | 9 | (4.13.d) Hydro-Testing
Alternative Program - Phase 3 | GTI | This project is the third phase of the program to identify and validate inspection and assessment technologies that are equivalent to a 1.25x MAOP hydro-test for the proposed Integrity Verification Process (IVP) compliance. | Reduce the cost of retesting pipelines that | The work in phase 2 created the Finite Element Analysis (FEA) critical flaw data and collected Probability of Delection (POD) data for EMAT and Acoustic Resenance Technology (ART) sensors. Phase 3 will create the critical flaw curves to allow a comparison to in-Line Inspection (ILI) tool detection capabilities. The deliverable of Phase 3 will be a tool that operators can potentially use to demonstrate equivalence to a hydrotest for a specific pipe segment. American Gas Association (AA) and/or the appropriate standards organizations will be consulted to implement the results of this project. | \$4,294 | | | 10 | (4.14.c) Surface Indentation for
Material Characterization
Correlation of Surface
Properties Based on Vintage | GΤΙ | Develop correlation factors to relate surface
properties to actual material properties to allow
surface indentation techniques to be used for
material property validation for pipelines. The
correlation factors will be based on pipe vintage
by decade. | This project has safety and economic benefits:
Reduce the cost in determining the pipe
material properties (e.g., strength) of steel
pipe for pipeline integrity purposes. | Past research has proven the ability of surface indentation techniques
such as stress-strain microprobes and hardness testing to accurately
determine material properties of pipes within a localized area, but
variations in material properties through the well are problematic for local
interrogation techniques. Probabilistic confidence intervals will be
developed to allow operators to use surface indentation techniques by
applying correlation factors to pipe materials that may have through-wall
variability. | \$6,922 | 8 | | 11 | (4.15.a) Field Ready Butt Fusion
Inspector Phase 2a (2b) | GTI | Provide a portable and field-hardened utrasonic tool to reliably inspect FE but fission joints in a field environment. The device must require the operator to understand or interpret utrasonic waveforms; yet uttimately provide a good or bad output indicator. The tool must require little or no field calibration, however it may require a verification standard to confirm proper device functionality. | This project has safety and economic benefits:
Enhancement of fusion execution for better
consistency in performance. | | \$3,669 | \$3,440 | | 12 | (5.14.a) Radio-Frequency
Identification (RFID) Testing
Program | | To conduct a testing program to compare the
performance and features of multiple RFID bag
solutions for locating and tracking underground
assets. | This project has a safety benefit: Enhancement of locating and tracking natural gas underground assets. | RFID tag installations were completed for the 3M Marker Ball, the
Berntsen Infra Marker, and the Eliot Marker System. Programming of
lags, along with user experience and impressions, were recorded. Assets
targeted for RFID tagging included a mix of steel and PE systems from
existing pipe lest beds in addition to available utility hock-ups (ass,
electric, and water). The project team is in the process of locating,
reading, and testing all installed above and below ground tags. | \$2,514 | | | 13 | (5.14.d.2a) Tracking and
Traceability for Transmission-
Phase 2a Standards for Mill Test
Reports (MTR) and Coating
Reports, Rev | GTI | | This project has a safely benefit:
Improved tracking of transmission pipeline
information for integrity management. | Phase 1 identified data collection requirements, developed barcode labeling specifications, and created a design document for field data collection software. Phase 2a will create standardized forms for MTR and factory applied coating information | \$3,353 | | | Ref. No | Organization/Project Name | Research
Performer | Project Description | Potential Benefits to AZ Customers | Status | | Apr. '16 - Mar. '17 | |---------|---|-----------------------|---|--
---|--------------------|---------------------------| | 14 | (5.14.d.3) Tracking and
Traceability Welding
Traceability Phase 3 | GTI | Develop field processes and a software
application capable of recording quality control
information to properly document the welding
processes common to steel gas transmission
line. The project will address welder
qualifications, weld procedure qualifications,
filler metal control, and the essential variables
defined for each weld procedure used in the
field. | This project has a safety benefit: Improved tracking of transmission pipeline information for integrity management. | Status The program results will provide the industry with a standardized approach for capturing pipe, appurtenance, welding and coating data. The initial effort in phase 3 included aligning the pianned softwar acriticuture with the data collection software currently under development in phase 2b for manufacturer information. The next step is to create a mobile application based on open standards. An advantage to this approach is that the application users will have access to both data collection workflows within the same tool. | Funding
\$3,669 | Funding
\$3,239 | | 15 | (5.14 n 2) Construction
Compliance Monitoring System
Ph2 | GΤΙ | Develop and test a risk, compliance and cost
management solution - Risk and Compliance
Assurance (RCA), including design objectives. | This project has a safety benefit: Improved tracking of field inspection for integrity management. | Phase 2 will build upon the success of the Phase 1 to produce an
enhanced software and implementation blueprint for the Construction
Compliance Monitoring (CCM) system. The CCM solution developed for
Phase 1 demonstrated the effectiveness of this system and approach.
Phase 2 seeks to enhance the effectiveness of this system and approach.
Phase 2 seeks to enhance the effectiveness of this solution in four key
areas: 1) Refine implementation and integration with company processes
and systems, 2) Incorporate knowledge management took within the
inspection tablets, 3) Extend RCA into other operations activities, and 4)
Enhance the application of statistical tools. | \$7,337 | \$7,337 | | 16 | (5.14.t) Methods to Detect
Inserted Plastic in Steel Mains | GTI | To identify field-friendly methods to determine if a steel main is plastic inserted. The method needs to be external and not require a high leve of training, if commercial devices are identified, initial feasibility testing of these will be performed. | This project has safety and economic benefits
Improved accuracy in pinpointing hard to find
plastic pipe inserted in steel main. In addition
reduced costs and increased safety in
operating distribution pipelines installed using
the insertion method (inside steel main). | Identify field-friendly methods to determine if a steel main is plastic inserted to provide tool to increase safety in the field. The method needs to be external and not require a high level of training, if commercial devices are identified, initial feasibility testing of these will be performed. | \$448 | | | 17 | (5.15.a) Cybersecurity
Collaborative | GTI | Create a multi-year program between natural
gas distribution companies and the Department
of Homeland Security (DHS) to address the high
priority cybersecurity issues of participating
members through a focused outreach and
education process and a technology evaluation
and transfer initiative. | This project has a safety benefit: Reduce the risk of any cyber-attack to distribution system. | Two (2) workshops were held with DHS and the sponsors to review and identify a list of potential projects to investigate further. Proposals have been prepared for three of the technologies and the sponsors are deciding which ones to develop further. | \$11,006 | \$11,006 | | 18 | (5.15.c) Review and Gap
Analysis of PE Access Fittings | GTI | Review currently available PE access fittings that allow entry into a live gas main, and perform a gap analysis with respect to gas utilities' needs. Based on those needs, to develop initial design/requirements of PE access fitting. | and line locating tools which will have an
impact to reduced excavation and restoration
costs. | Fourteen (14) existing fittings that are currently on the market that are similar to the desired specifications were identified. They consist of many representations of the specification of the specifications that have similar characteristics to access fittings. None of these access fittings satisfy all of the desired specifications of the sponsors and, therefore, further design work in conjunction with the manufacturer may need to be done. Final Report is being prepared. | \$11,006 | | | 19 | (5.15.d) Development of a Tee
Helmet for Fitting Protection | GTI | Develop a "tee helmet" to protect various fittings
(i.e., plastic service tees) from accidental strikes
during construction excavation, which can result
in damage to the tee and cause a subsequent
leak. | | A conceptual design will initially be developed and if approved, an alpha prototype will be developed. | \$3,669 | \$3,283 | | 20 | (5.15.e) Evaluate Inspection
Alert Tag for Critical Equipment | GTI | Evaluate technologies for a rugged electronic tag that can be attached to a fire extinguisher and possibly other devices used by utility crews to alert personnel when inspections or calibrations are due. | This project has safety and economic benefits:
Enhanced the tracking of inspections
and/or calibrations of items used by field
crews. | Input was solicited from the sponsors, and at least two companies were identified that provide software for the tracking of inspections based on a barcode or electronic identification affixed to the item. The project team is preparing to test one of the systems. The system can scan barcodes (optical or electronic) attached to specific assets and provide an operator with the inspection status of the asset. | \$3,669 | \$3,669 | | 21 | (5.15.f) No Stub Service Lateral
Retirement | GTI | To develop a method of retiring a gas service or
other lateral type fittings without leaving an
extended stub on the gas main. | This project has safety and economic benefits: The development of such a tool and process will mitigate the potential for 3rd party damage during future excavations. | A sponsor survey identified the types and sizes of fittings to examine. The project team is obtaining a Japanese developed machine for evaluation. The manufacturer is making modifications to the equipment to allow for English units and compatibility with U.S. tee sizes | \$3,669 | \$2,523 | | 22 | (5.15.m) Mobile Technology
Evaluation Program | GTI | Create a program for evaluating and rating new field hardware (tablet and hardened smart phone devices) that gas utilities can use for field data collection. | This project has an economic benefit:
Enhance the selection process of mobile field
devices. | The program will be systematic and will provide utilities quantitative and
qualitative results for purchasing field data collection hardware. A
prioritized set of use cases has been developed with the sponsors to
guide the work. | \$7,337 | \$7,337 | | Ref. No | Organization/Project Name | Research
Performer | Project Description | Potential Benefits to AZ Customers | Status | Apr. '15 - Mar. '16
Funding | Apr. 16 - Mar. 17
Funding | |---------|--|-----------------------|---|---|--|--------------------------------|------------------------------| | 23 | (5.16.f) Improved Safe
Excavation Productivity for
Locating Buried Utilities | GTI | Improve the effectiveness of safe vacuum excavation with compressed air to equal the productivity of hydro excavation. | This project has safety and economic benefits:
Reduced excavation and restoration
costs. | This project has recently been initiated. A vacuum excavation partner is being brought onto the team through a subcontract and a survey is being developed for the sponsors about their use of the vacuum-type tools. | | \$3,669 | | 24 | (5.16.g) Enhancement of the
Dynamic Cone Penetrometer
(DCP) Compaction Device | GTI | Enhance the current DCP commercial device for
acceptance and use for compaction
measurements of backfills in place of the
Nuclear Density Gauge (NDG). | This project has an economic benefit: Ensure that compaction is being performed properly (quality control) and enabling a utility to validate proper compaction. | The initial step in the project involves discussing the key data needs with
the sponsors. The data control unit will be modernized and functionality of
the global positioning system (GPS) location and wireless data
management and transfer will be improved. | | \$3,669 | | 25 | (6.06.a) Keyhole Project | GTI | Keyhole technology provides access to buried
pipelines through a hole approximately 18" in
diameter. This small size has many advantages
including lower excavation costs, fewer required
resources as well as minimal impact and
restoration to pavement. This program evaluates
and demonstrates new applications for keyhole
technology. | | The Keyhole Program held its recent biannual workshop for all members. Utilities and manufacturers shared the latest information related to keyhole topics ranging from mains and services replacement programs, cornosion protection, the municipal and regional process approval. A number of new technologies were demonstrated at the workshop. Plans are being developed for the next workshop and host site is being sought. | \$7,337 | \$7,337 | | 26 | (6.08.a) Carbon Management
Information Center (CMIC) | ĞТІ | To collaborate with members from natural gas
and propane companies to address industry
issues and opportunities in the evolving arena of
source efficiency and gas emissions. | end-use equipment in reducing overall energy use. | Contribute to the progress of U.S. green building practices and rating systems by providing credible and unbiased technical data regarding the benefits of source energy in reducing energy consumption and carbon emissions. Through the CMIC program, technical experts are directly involved in technical committees and public review processes on full-fuel-cycle analysis and bringing greater awareness to the many ways the direct use of natural gas can improve source energy efficiency, reduce greenhouse gas emissions and lower energy costs for consumers. This program provides operators and builders with full information on full fuel cycle efficiencies and carbon dioxide (CO2) emissions. | \$11,006 | \$11,006 | | 27 | (6.11.a) Pipeline Research
Council International (PRCI)
Membership | GTI | Membership in the PRCI program and full participation in their technical committees through GTI's OTD. | This project has an economic benefit: Provide more access to research materials that OTD and NYSEARCH have not addressed. | PRCI funders review and select the projects of interest to fund from these 7 committees: Corrosion; Design, Malerials, and Construction; Integrity and Inspection; Survillance, Operations, and Monitoring; Compressor and Pump Station; Measurement, and underground Storage. OTD has access to PRCI's library of reports and software. Currently ideas for proposals for 2017 are being identified and reviewed. | \$7,337 | \$7,337 | | 28 | (7.15.b) Remote Gas Sensing
and Monitoring | GTI | To create a device to remotely monitor the level of gases during emergency situations. The device will provide critical information to first responders and gas company personnel, allowing them to determine the concentration of methane, carbon monoxide, and possibly other key indicators inside buildings, sewers, and other structures from a safe distance | and gas company personnel during
emergency situations. | Ongoing Phase 1 is developing a system to allow a leak investigator to monitor methane levels at multiple points within a site under investigation. The investigator uses a tablet or phone to see the gas values in real time. Phase 2 will develop an unattended methane monitoring device. This monitor would be placed in the vicinity of a suspected (or recently repaired) leak to provide 24 to 48 hours of unattended monitoring. Placement of the device would be at the discretion of the investigator, determined by the hazerds at a particular site. | \$3,669 | \$5,221 | | 29 | (8.16 a) Intelligent Field Data
Collection Platforms | GΠ | Improve the accuracy, consistency,
completeness, and relevancy of datasets by
leveraging recent and emerging field-based
technology advances and incorporating lessons
learned from previous generations of field-based
applications. This "Smart Form" development
effort will focus on compliance, utility asset, and
key risk-related datasets. | | GTI will develop a fully functional prototype system for testing and demonstrating a specific use case for: - Field Personnel Best Practices and Training - Audit and Inspection of Field Operations - Field Based Leak Management - Exposed Pipe Inspections | | \$3,669 | | 30 | (8.16.b) Remote Quality
Assurance/Quality Control:
Fusion Inspection and Reporting | GTI | GTI will develop a process, visualization, and reporting capability to support both operator as well as code regulations related to field based inspections. The use case for the system will be focused on the capture of piastic fusion related data and required inspections. | This project has an operational benefit:
Assist in increasing the inspection
requirements, data recording, and reporting of
plastic fusions being performed by field
personnel. | GTI will develop a fully functional prototype system for testing in a pilot project as well as initiate commercialization of the prototype system. | | \$3,669 | | | | Research | | | | | Apr. '16 - Mar. '17 | |---------|---|-------------------------|--|---|---|------------|---------------------| | Ref. No | Organization/Project Name | Performer | Project Description | Potential Benefits to AZ Customers | Status | Funding | Funding | | 31 | (9.16.a) Determining Data
Quality Implication | GΤΙ | To develop a methodology, implementation protocols, and case studies. | This project has a safety benefit Enhance data quality, which is essential for proper risk analysis that will be used to support management decisions. These decisions are related to pipeline integrity programs. | A methodology, implementation protocols, and case studies will be developed which will allow the operators to: I) construct a pedigree (i.e., data source and quality) analysis of their pipeline system database quantifying agos, consistencies, default value rationale, etc. 2) calculate a 'Health Index' parameter on their database entries at the individual data point and roll up to pipeline segment level and 3) facilitate Fisik Management activities by demonstrating how the Health Index can be used to prioritize preventive and mitigative measures, data collection, risk ranking, and unknown threat determination. | 700 | \$7,337 | | | | | | | | \$504,211 | \$370,651 | | | NYSEARCH | | | | OTD Balance Available | -\$124,490 | -\$164,986 | | | NYSEARCH Membership Dues | | | | L | \$44,021 | \$44,021 | | 32 | Emissions Quantification Test
Program (M2014-004 Phase
Illa/Illb) | NYSEARCH | The project is intended to ensure that new technologies that are being applied to quantify methane emissions from handheld, mobile or aerial platforms can be properly validated for application in the complex gas distribution environment; particularly those systems in urban and/or congested areas. | This project has an economic benefits: This will assist in prioritizing the repair of grade 3 leaks by their rate of emission and this leak rate information can also be used in prioritizing segments for main replacement programs. | A controlled tests were completed and the results/analysis were discussed and finalized. From that work, the data that was acquired from the three selected technology service providers showed that there was too much variability in the actual vs measured emissions rates and that we needed to
collect more data and separate the results into bins of very low flow rate, with the independent statistician showing this variability in terms of accuracy and precision, the funding group decided that we could not proceed to live field tests, but instead asked for a second round of controlled testing. | \$10,393 | \$28,188 | | 33 | Hardness Testing – Feasibility
Study with Robotic Platform –
Phase II
(M2011-006 Robotics Supporting
Technologies, Phase IXb) | Invondane | This project will: (a) build a hardness tester integrated onto the Explorer 20/262 robotic platform for the inspection of natural gas unpligable pipelines, able to carry out hardness testing from the interior of a pipeline, and (b) demonstrate the ability to carry out such a test at the specification standards met by portable hardness testers variable in the market today. | This project has safety and economic benefits:
Reduce cost to carry out non-destructive
testing of pipelines. The ability to carry out
such non-destructive tests inline avoids hydro
testing or expensive and disruptive
excavations to carry out the same task from
above ground. | The feasibility study was completed. The technology development and testing program has been outlined. The plan is to integrate the hardness tester module into the EXP 20/26 platform. The timing of this work depends on our success in finalizing the design and in finding a live field test site for testing the hardness test module. We are seeking testing sites from the NYSEARCH funders for work to be conducted in the summer or fall. | \$15,962 | | | 34 | Design, Construction, and Testing of Magnetic Flux Leakage (MFL.) Sensor for Inspection of Bends in Unpiggable Pipelines - Phase VII-b | Invondane | The work proposed by Invondane involves: (a) the laboratory testing of bend inspection using the existing MFL sensors in order to validate the results of the numerical studies carried out in the feasibility study. (b) implementing design changes to the magnetic bars to improve bend inspection capabilities, (c) lesting the new magnetic bars on Explorer 20/26, (d) developing the algorithms to handle the data from such inspection, and (e) developing the sizing routines for defects in bends. The proposed work scope is divided into five teaks. | capabilities of the Explorer robots for the inspection of unpiggable pipelines. | | | \$43,254 | | 35 | Odor Detection Threshold Study
(M2016-002) | Monell Senses
Center | Complete a comprehensive review of the state-
of-the-art methodology to measure natural gas
odorarts and mixtures and to determine with
updated methods the range of detection and
readily detectable (recognition) thresholds for
mercaptans used in the natural gas distribution
sector. | This project has a safety benefit: Better understanding mercaptan level needed to be detectable (recognition). Promote a safe and reliable distribution system. | The first part of the program will be to perform a literature search to help with the development of tests protocols for the study. Further, Monell needs to build an olfactometer test apparetus that is specific to the data that is necessary for testing random individuals and gaining statistical confidence on the sensitivity and variability of where mercaphans are first sensed (threshold levels) and then at what concentration the mercaphans are sensed /recognized as being the presence of natural gas. The tests will be conducted on two mercaphan compounds and one mixture. | | \$24,872 | | 36 | Standoff Gas Flow Imaging and
Analysis System Proof of Concept
(M2015-002) | SRI/FloViz | This is a feasibility study of the Schleiren Optical
Imaging Technology and is designed to examine
whether methane emissions quantification
measurements can be performed. | This project has an economic benefit: This will assist in prioritizing the repair of grade 3 leaks by their rate of emission and this leak rate information can also be used in prioritizing segments for main replacement programs | The first part of the feasibility study that is ongoing focuses on traditional large-size Schleiren measurements to show the range of direct flow rate capabilities and in various conditions. The second part (after a GO/NO GO milestone) is designed to miniaturize the large optics from the Traditional system and once again show applicable measurements and imaging analysis on a more portable benchtop handheld system. | | \$38,691 | | | | Research | | | | Apr. '15 - Mar. '16 | A 140 . 140 . 145 | |---------|---|-----------------------------------|--|---|--|---|--| | Ref. No | Organization/Project Name | Performer | Project Description | Potential Benefits to AZ Customers | Status | Funding | Funding | | 37 | Development & Testing of RFID
Tag for Coiled PE Pipe (M2016-
003) | Engle | The overall objective of the proposed program is to develop and test a helical antenna and signal processing system for RFID technology embedded on colled PE pipes that work in all soil conditions. The goal of this work is to determine whether RFID technology, that is currently applied to straight segments of pipe, can be re-designed and effectively applied to PE coiled pipe as installed in trenchless applications. | Improved tracking of distribution pipeline information for integrity management and locating PE pipe. | NYSEARCH/Engie program is set up to design and test the RFID for PE coiled pipe and then determine if the technology is meeting specifications that are required by NYSEARCH funders in North America. If proof-of concept is successful then a next phase would be planned for field testing. This RFID technology not only allows tracking and traceability of PE pipe but it serves as a PE pipe locator. Subtotal NYSEARCH Allocation | | \$12,664
\$191,690 | | | Other | | | | | | | | 38 | Temperature Study | Arizona State
University (ASU) | temperature sensing, data gathering, data
analysis and testing validation. | This project has a safety benefit: Better understanding of operating temperature conditions of underground facilities. Promote a safe and reliable distribution system. | Southwest Gas (SWG) and ASU have been monitoring and collecting weather data since July 2014. There are four locations in Arizona-Tempe, Tuscon, Yuma, and Bullhead City. Two locations in Newada-Henders on and Carson City. One location in Berstow, California. The temperature sensors were piaced at depths of 6-inch, 24-inch, 36-inch, and 42-inch below the pavement and dirt. Moliture sensors were installed at depths of 6-inch, 24-inch, and 36-inch below the pavement and dirt. Each temperature station is self-sufficient as dual solar panels are used to generate power for the Data loggers and the sensor reading are continuously taken at 5-minute intervals. Annual average temperatures at each site both dirt and pavement have been computed at each depth from July 2014 through July 2015. Data from all sites will be continuously monitored and downloaded weekly. | \$76,991 | \$47,690 | | 39 | Joint Industry Project (JIP)
Improved In-Situ Determination
of Pipe and Weld Properties | DNV-GL | The objective of the joint industry project is to
evaluate the use of various field portable (in-
situ) nondestructive analyses to determine
strength and toughness of pipe base metal and
seams (ERW and flash welded seams). The
ability to nondestructively determine mechanical
properties directly influences pipeline integrity
assessments (i.e., significance of flaws) and
supports confirmation of MAOP validity when
records are incomplete or not verified. | This project has safety and economic benefits:
Reduce the cost in determining the pipe
material properties (e.g., strength) of steel
pipe for pipeline integrity purposes. | The work builds upon the results of a prior JIP that validated the ability to use of hardness test data from field portable testers to determine the lower bound of expected pipe base metal yield strength. The results indicate that by considering multiple data sets consisting of hardness data, steel composition, and steel microstructure some estimates of loughness for both the base metal and seams are
possible. The same types of data can provide improved ability to estimate the yield strength of base metal and seams. A draft final report has been issued for review by JIP members. | \$14,161 | | | 40 | Keyhole Tool Fastrack | Timberline Tool | The objective of this proposal is to fastrack the development of a group of PE pipe tools for Southwest Gas Corporation to be used in keyhole excavation operations. | This project has safety and economic benefits:
Improved safety in performing installation and
maintenance of PE pipe while using key hole
method for accessing the pipe. | Timberline designed & manufactured working keyhole prototypes of a 3" sleeving cutter, a ½"-1" pipe cutter tool, and camera insertion tool.
Timberline will continue to work towards refining these prototypes based on feedback from SWG. | \$17,976 | | | 41 | Picarro Surveyor Field Triat | SWG | To evaluate the use of Picarro Surveyor system
for determining leaks. Picarro will provide the
equipment, training, driving protocol and assist
in the validation process. | This project has safety and economic benefits:
Improved accuracy in pinpointing hard to find
leaks. In addition, reduced costs in pinpointing
leaks. | Field evaluations have taken place from the 3rd quarter of 2015 through
the 1st quarter of 2016. The evaluations have demonstrated that the
technology is able to find leaks. Analysis of the data and processes
utilized during the field trials will be completed in the 2rd quarter of 2016.
Based on this analysis, further field trials may be conducted. | \$110,052 | | | | | | | | Subtotal Other Allocation | \$219,180 | \$47,690 | | ی | General Notes: | | | | Total Dollars Allocated
Total Available Research Dollars
Available Dollars | Apr. '15 - Mar. '16
Funding
\$688,712
\$688,712
\$0 | Apr. '16 - Mar. '17
Funding
\$688,712
\$569,535
-\$119,177 | <u>General Notes:</u> Total authorized collection in Final Order is \$688,712 per year. Funding is collected in a deferred balancing account. Trotal authorized collection in Final Order is \$688,712 per year. Funding is collected in a deferred balancing account. Proposed projects reflected in current or proposed funding year may change. Some projects may terminate pending progress or proposed projects may not materialize due to lack of support. In addition, research organizations meet and discuss new and existing projects at various times of the year. this document reflects projects and information as of the date of this document. Actual allocation amount may change due to changes in projects described in tiem #2 above or due to number of companies that ultimately fund a project. Southwest anticipates using all available dollars as appropriate R&D project proposals are received.